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Introduction/Background
• Can STAP performance be improved by choosing 

secondary data based upon a priori map data?
• Cell Averaging Symmetric Algorithm - choose 

secondary data plus and minus N/2 range rings 
from the test ring (omitting guard cells)
– Implicit assumption - nearby range rings of the 

test ring are homogeneous with respect to terrain 
and are representative of the test ring.

Conjectures:
• Case I – Homogeneous Terrain Environment – Expect 

equal performance
• Case II – Heterogeneous Terrain Environment –

Expect improved performance



Objective/Proposed Algorithm
• Single-Bin Post-Doppler STAP
• Basic Assumption - Major clutter competing 

with the target cell is due to the patch of Earth 
within the same test ring that passes through 
the same Doppler filter

• Picking secondary range-Doppler cells that 
have the “same” terrain as the test cell will 
provide better performance than the cell 
averaging symmetric algorithm. 



Multi-channel Airborne Radar 
Measurement (MCARM) Program 

• USAF RL/SN Measurement program – mid 
1990’s

• Side looking L-Band radar
• 2 by 11 Channel linear array including sum and 

delta analog beamformers
• 120 Meter resolution with approximate 500 

range bins
• 128 Pulses within a coherent processing interval 

(CPI)
• Returns were typically unambiguous in Doppler
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MCARM Radar Registration 
With Map Data



Terrain Data Selection
• 21 terrain classifications were used, 200 meter (target 

injection) and 30 meter (MTS targets) resolution –
National Land Cover Data (NLCD)

• Delmarva Peninsula is relatively flat – No elevation or 
digital line graph data were used

• Created a terrain vector from the 21 classification codes 
for each range-Doppler cell 

• Accounted for differences in number of NLCD patches 
per range-Doppler cell 

• Developed an algorithm to choose “like” range-Doppler 
cells by using a Euclidian distance measure between the 
normalized terrain vectors



MSMI Output Using Sliding Window Algorithm 
With Injected Target At Range Bin 475 



MSMI Output Using KBMapSTAP Algorithm 
With Injected Target At Range Bin 475 



MSMI Output Using Sliding Window Algorithm 
With Injected Target At Range Bin 375



MSMI Output Using KBMapSTAP Algorithm 
With Injected Target At Range Bin 375 



MSMI Output Using Sliding Window Algorithm 
With Injected Target At Range Bin 296 



MSMI Output Using KBMapSTAP Algorithm 
With Injected Target At Range Bin 296 



Early Assessment
• Outperformed standard windowing approach within 

heterogeneous environments (up to 9 dB improvement)
• Performed the same as standard windowing approach 

within homogeneous environments
• However, there are issues with this approach

– Map data accuracy – data are not always current
– Digital elevation data needed in mountainous terrains–

shadowing effects
– Weather data is time dependent
– Time of year – e.g. snow covered terrain
– Registration and calibration errors must be assessed
– Variability in STAP results compared to sliding window

• Need to “see what the radar is seeing”
• Map data is necessary but not sufficient for filtering and 

detection– also need mapping data for tracking (e.g. 
roads and railroads)  



Secondary Data Guard Cells
• Analysis of early results were suspect
• Analysis of Moving Target Simulated (MTS) data 

indicated range-Doppler spread
– Potentially violating i.i.d. criteria in STAP processing

• Excluded range cells around secondary data cells 
to mitigate the affects of range-Doppler spreading

• Due to number of required range cells, total 
number of range cells available, and the number 
of guard cells:
– Tried to use full array (22 elements) – Not enough 

samples
– Used upper row array (11 elements)



























Results

• Knowledge-aided approach performed 3-7 dB 
better than cell averaging symmetric (sliding 
window) method in non-homogeneous terrain 
environments

• Used modified sample matrix inversion (MSMI) –
as our test statistic

• MTS target at range bin 450
• Ratio of MSMI of target to average MSMI, over 

all ranges, is our preferred performance 
measure (PPM)  



Seeing What the Sensor Sees







Digital Elevation Model (DEM)
Data



DEM Data Algorithm 
Development

• Chose a mountainous region
• A real radar with multiple CPIs
• Real truth data – more than MTS data
• Minimal variation in NLCD data – not 

included in algorithm
• Algorithm is automated in MATLAB (based 

upon % shadowing and reflection angle 
statistics per range ring)



Scene with DEM, LULC and DLG Terrain Data



Scene with 10 Meter DEM Terrain Data in 
MATLAB



Chosen Range Bins on Flat Terrain

(Test Cell Red, Sample Cells Yellow)



Chosen Range Bins on Mountainous Terrain

(Test Cell Red, Sample Cells Yellow)



Shadowed Range Cells Shown in Blue



Agile Intelligent Radar System 
(AIRS)



AIRS Architecture
 

Space/ 
 Space-Range
Processor

Tracker

Filter Environmental
Processor

Detection 
Environmental
Processor

Tracker Environmental
Processor

Analog Beamformer

A/D A/D A/D

- - -

Detection
Reports

User Inputs

K 
N 
O 
W 
L 
E 
D 
G 
E 
B 
A 
S 
E 
C 
O 
N 
T 
R 
O 
L 
L 
E 
R 

Flight 
Profile 

 

Intel. 
Data 

CFAR

Pattern Synthesis Processor

Space Time 
Adaptive  
Filtering 

Non Adaptive
AMTI

Doppler Filtering

Track
Reports

Clutter 
Map 

Config- 
uration 
Info. 

AUX 1          2                        Nc      MAIN

1               2                       Ns         Nc

1                         Ms

<

User Interface
Processor

Other 
Sources 



An Agile Intelligent 
Radar System (AIRS)

• The KB Signal and Data Processing portion of 
the Intelligent Sensor System

• KB Controller (KBC), processors, outside data 
sources, communications, user interface, and 
pre-loaded data

• Processors work independently and 
cooperatively

• The KBC handles all interrupts, assigns tasks, 
manages processors, communicates results, 
and interfaces with the user



Space/Space-Range Processor (SSRP), 
Pattern Synthesis Processor (PSP), Filter Environmental 

Processor (FEP) and KBC Interfaces
• KBC provides tasking and the location 

of jammers, discretes, unintentional 
interferers, etc.

• Processors will “optimize” the KBC 
tasking

• Data exchange and feedback on 
results are passed between the 
processors and the KBC (dB 
attenuation, gain/loss, algorithms & 
parameter values)

• KBC will provide control and satisfy 
operational requests e.g. user wishes 
to exercise multiple algorithms
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Detection Environmental 
Processor (DEP) and KBC Interface
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• KBC provides filter data, clutter 
map and tracker data to the 
DEP

• DEP uses these data for 
selecting its CFAR algorithm 
and setting of thresholds based 
on “targets” and clutter data

• DEP provides PD, PFA, 
algorithms, and parameters 
used

• KBC tasks DEP processing



Tracker Environmental 
Processor (TEP) and KBC Interface
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User Interface
Processor

Other 
Sources • KBC provides the TEP priority of 

targets, results of DEP, control and 
tasking  

• TEP uses these data along with 
terrain data for declaring and 
managing tracks

• TEP provides all track data (track 
i.d., track probability or certainty, lost 
tracks, etc.)  algorithms, and 
parameters used

• KBC tasks TEP processing



User Interface Processor 
(UIP) and KBC Interface
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• KBC provides the UIP with 
processed data – intermediate 
results, performance measures, 
what and why decisions were 
made, and assist user in 
configuring the antenna and 
processors

• UIP tasks the KBC
• KBC tasks the Process 

Manager and Data Manager* to 
configure all computers & 
algorithms for next iteration

*Process Manager and 
Data Manager are not 
shown in architecture



Additional KBC Interfaces
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• Configuration Information e.g. radar 
description, radar location, and 
antenna, Rx, & Tx characteristics 

• Clutter Map i.e. data required by 
algorithms e.g. DEM, NLCD, DLG, 
etc.

• Intelligence data e.g. location of 
jammers, other radar systems, target 
kinematics and parameters

• Flight Profile
• Antenna – communications link for 

obtaining and providing information

Process Manager and 
Data Manager store and 
manage most of these 
data for the user and the 
KBC 



AIRS State Processing

• State 1 – pre-flight loading of intelligence, 
mission, and terrain data

• State 2 – initial transient state e.g. 0 - 4 CPIs
• State 3 – correlation, performance, assessment 

and learning state e.g. 4 – 20+ CPIs
• State 4 - steady state e.g. after 1 to 2 flights 

over area (e.g. race track routes)
• Partitioned KBC into a KB performance 

processor and a KB control processor 
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20- Measure 
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Summary/Future Plans
• Introduction/Background
• Approach
• 200 meter NLCD (national land cover data) data – injected targets
• 30 meter NLCD data – moving target simulator (MTS) targets
• Seeing what the sensor sees
• 10 meter DEM data 
• Agile Intelligent Radar System (AIRS)
• Future Plans

– DEM model development and test in SPEAR facility
– Continue with image map development – seeing what the sensor sees
– Integrate NLCD, DEM, and DLG data
– Extend KB control logic design for the total processing chain - AIRS

• Acknowledgements
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In estimating the covariance matrix, if one wishes to maintain an average 
loss, compared to the optimum, of better than one-half (less than 3 dB), 

at least 2N samples of data are needed. 

I. S. Reed, J. D. Mallet, and L. E. Brennan, “Rapid Convergence Rate in 
Adaptive Arrays,” IEEE Transactions on Aerospace and Electronic 
Systems, Vol. 10, No. 6, pp. 853-863, November, 1974.

• In order to demonstrate that knowledge-aided approaches improve STAP 
performance we need to use real radar data since similar knowledge sources are 
used to produce simulated radar data.

• If we use real radar data we have no way of knowing what the true covariance 
matrices are and, therefore, a reliable performance metric is hard to obtain.

• We need to develop a statistical performance measure, when using real radar 
data, to evaluate STAP algorithms properly.  A couple of data points are not 
sufficient to prove that new approaches are better than current ones.

• However, a statistical performance measure would require a large collection of 
radar data with accurate truth information about embedded targets.
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Newton-Raphson Iterative Method
of solution used to solve registration
equations.

An oblate spheroid (elliptical) model of the 
Earth was used.
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